If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F+5)=F^2-4F
We move all terms to the left:
(F+5)-(F^2-4F)=0
We get rid of parentheses
-F^2+F+4F+5=0
We add all the numbers together, and all the variables
-1F^2+5F+5=0
a = -1; b = 5; c = +5;
Δ = b2-4ac
Δ = 52-4·(-1)·5
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{5}}{2*-1}=\frac{-5-3\sqrt{5}}{-2} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{5}}{2*-1}=\frac{-5+3\sqrt{5}}{-2} $
| 8.00x+13.00=7.50x+16.00 | | 3x-6x=180 | | 3(b+80)=60 | | y=3/5+5 | | 64y=9(7y+30) | | 2h+17=89 | | 7.32=-1.2g-4.8 | | 16-2k=8-4K-4 | | -2(7m-5)=-14m+10 | | y^+7=23 | | 16-2k=8-4K | | 5p-9=4p-4 | | 6(5+4v)=-162 | | 4n-1=11+2n | | 8n+4=35 | | 64y=9(7+30) | | -5+7r=r+1 | | 9n-33=39 | | 1-2v=7+5v-5v | | 90+x+55=180 | | -3(6n+3)+4(4n+1)=43 | | 3x+4(3x+8)=152 | | 2x-6+x=-18 | | (6x+7=11)2/1 | | x+25+81=180 | | 3h=7(72−73h)−10 | | 90+x+60=180 | | (1.5xx52)+(xx52)=60000 | | 4(3^2x+1)+5=329 | | 90+x+30=180 | | (2.5xx52)+(xx52)=60000 | | 4x+8=132 |